

72 Fibers Armored Optical Cable SPECS

1. Introduction

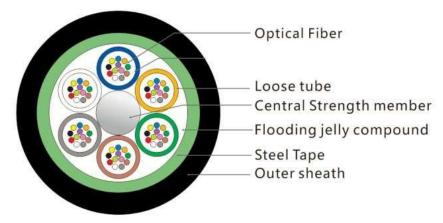
This type of fiber optic cable is composed of loose tube fiber optic cables with compact structure, and the cable jacket is made of strong Polyethylene. High strength loose tubes have hydrolysis resistants. Cable filling materials ensure high reliability. This cable can be used for LAN and WAN backbones, telecom access lines, fiber to the business and fiber to the building drop connections, as well as fiber to the home drop and access connections.

Features

- Good mechanical and temperature performance
- Special design to prevent loose tube shrinking
- Crush resistance, water blocking and flexibility
- PE sheath protects cable from ultraviolet radiation
- High strength loose tube that is hydrolysis resistant

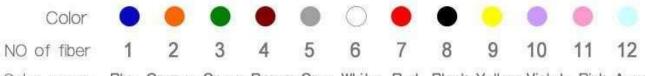
Application

- CATV
- Local trunk line
- Rural communication
- Computer networks system
- Aerial & conduit/duct application


2. Optical Characteristics

Optical Specifications for G6	52D single mode fiber		
Attenuation(dB/km)	@1310nm	≤0.36db	o/km
	@1383nm (after hydrogen aging)	≤0.32db/km	
	@1550nm	≤0.22db/km	
	@1625nm	≤0.24db/km	
Dispersion	@1285nm~1340nm	-3.0~3.0ps/(nm*km)	
	@1550nm	≤18ps/(nm*km)	
	@1625nm	≤22ps/(nm*km)	
Zero-Dispersion wavelength		1300~1324nm	
Zero-Dispersion slope		≤0.092ps/(nm²*km)	
Mode field diameter @ 1310nm		9.2±0.4µm	
Mode field diameter @ 1550nm		10.4±0.8µm	
PMD	Max. value for fiber on the reel	0.2ps/km 1/2	
	Max. Designed value for link	0.08ps/k	km 1/2
Cable cutoff wavelength, λ	cc	≤1260nr	n
Effective group index (Neff)@1310nm		1.4675	
Effective group index (Neff)@1550nm		1.4680	
Macro-bend loss (Φ60mm,100 turns) @1550nm		≤0.05db)
Back scatter characteristic(@	01310nm&1550nm)		_
Point discontinuity			≤0.05db
Attenuation uniformity			≤0.05db/km
Attenuation coefficient difference for bi-directional measurement			≤0.05db/km
Geometrical characteristics			_
Cladding diameter			125±1µm
Cladding non-circularity			≤1%
Core/cladding concentricity	r error		≤0.4µm
Fiber diameter with coating(uncolored)			245±5µm
Cladding/coating concentricity error			≤12.0µm
Curl			≥4m
Mechanical characteristic			_
Proof test			0.69GPa
Coating strip force (typical value)			1.4N
Dynamic stress corrosion susceptibility parameter (typical value)			≥20
Environmental characteristic	s(@1310nm&1550nm)		
Temperature induced attenuation (-60~+85°C)		≤0.5dB/km	
Dry heat induced attenuation(85±2°C,30days)			≤0.5dB/km
Damp heat induced attenuation (85±2°C, RH85%,30days)			≤0.5dB/km

WWW.FROGENGINEERING.COM



3. Cable Structure

3.1 COLOR IDENTIFICATION OF FIBER

The fibers shall be marked by a colored coating with 12 different colors according to EIA/TIA 598:

Color names Blue Orange Green Brown Grey White Red Black Yellow Violet Pink Aqua

3.2 Dimensions and Descriptions

The standard optical cable structure is shown in the following table, other structure and fiber count are also available according to customer requirements.

Cable Parameter				
Cable Type	Single-Armored Outdoor	Fiber Count	72 Fibers	
Construction	Stranded Loose Tube	Fiber Type	Dry core G.652D	
Outer Jacket	PE (Black)	Central Strength Member	Steel Wire	
Cable Diameter	11.9±0.3mm	Weight	140 kg/km	
Armor Layer	corrugated steel armor	Application	Duct Aerial	
Tensile Strength (long/short term)	600/1500N	Crush Load (long/short term)	300/1000 (N/100mm)	
Bending Radius (long/short term)	10D/20D (mm)	Operating/Storage Temperature	-40 to +60°C	

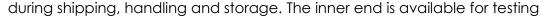
4. Mechanical, Physical and Environmental Test Characteristics

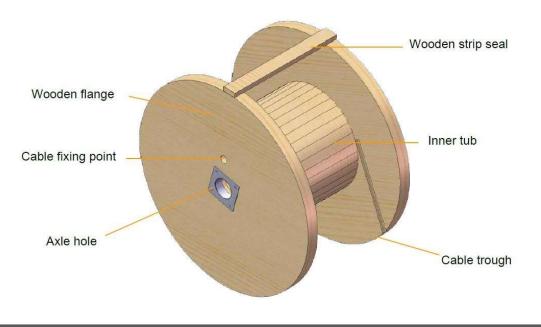
The mechanical and environmental performance of the cable are in accordance with the following table. Unless otherwise specified, all attenuation measurements required in this section shall be performed at 1550nm.

Items	Test Method	Requirements
Tension	IEC 60794-1-2-E1 Load: According to 3.5 Sample length: Not less than 50m. Duration time: 1min.	Additional attenuation: ≤0.1dB after test No damage to outer jacket and inner elements
Crush	IEC 60794-1-2-E3 Load: According to 3.5 Duration of load: 1min	Additional attenuation: ≤0.1dB after test No damage to outer jacket and inner elements
Impact	IEC 60794-1-2-E4 Radius: 300 mm Impact energy: 10 J Impact number: 1 Impact points: 3	Additional attenuation: ≤0.1dB No damage to outer jacket and inner elements
Repeated bending	<u>IEC 60794-1-2-E6</u> Bending radius: 20*D Cycles: 25 Load: 150N	Additional attenuation: ≤0.1dB No damage to outer jacket and inner elements
Torsion	IEC 60794-1-2-E7 Cycles:10 Length under test: 1m Turns: 180° Load: 100N	Additional attenuation: ≤0.1dB No damage to outer jacket and inner elements
Water Penetration	IEC 60794-1-2-F5B Time: 24 hours Sample length: 3m Water height: 1m	No water leakage.
Temperature cycling	IEC 60794-1-2-F1 Sample length: at least 1000m Temperature range: -30 °C ~+70 °C Cycles: 2 Temperature cycling test dwell time: 12 hours	The change in attenuation coefficient shall be less than 0.05 dB/km.
Other parameters	According to <u>IEC 60794-1</u>	

5. Packing and Marking

Cable Sheath Marking:


• Unless otherwise specified, the cable sheath marking shall be


black

- Contents: Year of manufacture, type of cable, cable number, length marking Interval: 1 m
- Outer sheath marking legend can be changed according to user's requests.
- Reel Length
 - Standard reel length: 2/3 km/reel; other lengths are also available.
- Cable Drum
 - The cables are packed in fumigated wooden drums.

• Cable Packing

 Both ends of the cable will be sealed with suitable plastic caps to prevent the entry of moisture during shipping, handling and storage. The inner and is gvailable for testing.

WWW.FROGENGINEERING.COM